SA305 - Linear Programming

Lesson 13. Improving Search: Finding Better Solutions

1 A general optimization model

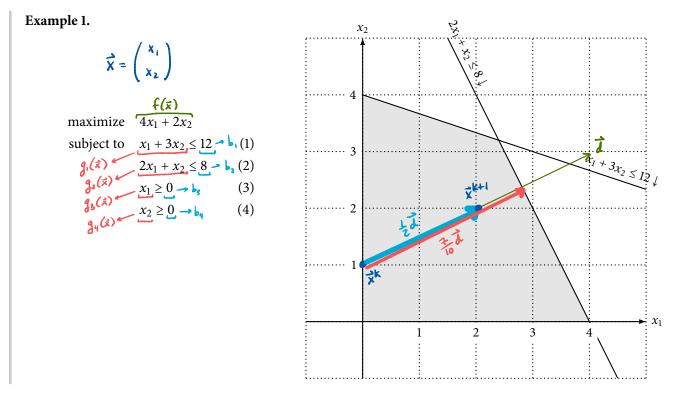
- For now, we will consider a general optimization model
- Decision variables: x_1, \ldots, x_n
 - Recall: a feasible solution to an optimization model is a choice of values for <u>all</u> decision variables that satisfies all constraints
- Easier to refer to a feasible solution as a vector: $\mathbf{x} = (x_1, \dots, x_n)$
- Let $f(\mathbf{x})$ and $g_i(\mathbf{x})$ for $i \in \{1, ..., m\}$ be multivariable functions in \mathbf{x} , not necessarily linear
- Let b_i for $i \in \{1, ..., m\}$ be constant scalars

minimize/maximize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i \text{ for } i \in \{1, \dots, m\}$

$$(*)$$

• Linear programs fit into this framework



2 Improving search algorithms, informally

- Idea:
 - Start at a feasible solution
 - Repeatedly move to a "close" feasible solution with better objective function value
- The neighborhood of a feasible solution is the set of all feasible solutions "close" to it
 - We can define "close" in various ways to design different types of algorithms
- Let's start formalizing these ideas

3 Locally and globally optimal solutions

• ε -neighborhood $N_{\varepsilon}(\mathbf{x})$ of a solution $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ (where $\varepsilon > 0$):

$$N_{\varepsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{y}) \leq \varepsilon\}$$

where $d(\mathbf{x}, \mathbf{y})$ is the distance between solution \mathbf{x} and \mathbf{y}

• A feasible solution **x** to optimization model (*) is **locally optimal** if for some value of $\varepsilon > 0$:

 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions $\mathbf{y} \in N_{\varepsilon}(\mathbf{x})$

• A feasible solution **x** to optimization model (*) is **globally optimal** if:

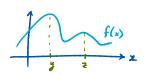
 $f(\mathbf{x})$ is better than $f(\mathbf{y})$ for all feasible solutions \mathbf{y}

• Also known simply as an **optimal solution**

- Global optimal solutions are locally optimal, but not vice versa
- In general: harder to check for global optimality, easier to check for local optimality

4 The improving search algorithm

- 1: Find an initial feasible solution \mathbf{x}^0
- 2: Set k = 0
- 3: while \mathbf{x}^k is <u>not</u> locally optimal **do**
- 4: Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
- 5: Set k = k + 1
- 6: end while
- Generates sequence of feasible solutions $\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots$
- In general, improving search converges to a local optimal solution, not a global optimal solution
- Let's concentrate on line 4 finding better feasible solutions



 $\vec{x}^{k+1} = \vec{x}^k + \lambda \vec{d} + feasible$

5 Moving between solutions

• How do we move from one solution to the next?

to the next?
new
$$\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$$
 direction
solution $\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda \mathbf{d}$

solution

• In Example 1:

Let
$$\vec{x}^{k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $\lambda = \frac{1}{2}$ $\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$
 $\Rightarrow \vec{x}^{k+1} = \vec{x}^{k} + \lambda \vec{d} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

6 Improving directions

- We want to choose **d** so that \mathbf{x}^{k+1} has a better value than \mathbf{x}^k
- **d** is an **improving direction** at solution \mathbf{x}^k if

$$f(\mathbf{x}^k + \lambda \mathbf{d})$$
 is better than $f(\mathbf{x}^k)$

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$
$$\vec{a}^{\mathsf{T}} \vec{b} = a_1 b_1 + a_2 b_2$$

for all positive
$$\lambda$$
 "close" to 0

- How do we find an improving direction?
- The **directional derivative** of f in the direction **d** at solution \mathbf{x}^k is

$$\frac{\nabla f(\vec{x}^k)^T \vec{d}}{\|\vec{d}\|} = \text{rate of change in } f \text{ at } \vec{x}^k \text{ in the direction } \vec{d}$$

• Maximizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if

$$\nabla f(x^{*})^{T} \vec{a} > 0$$

• Minimizing $f: \mathbf{d}$ is an improving direction at \mathbf{x}^k if

 $\nabla f(\vec{x}^{k})^{T}\vec{a} < 0$

• In Example 1:

Is
$$\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 improving at $\vec{x}^{k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$?
 $f(\vec{x}) = 4x_{1} + 2x_{2} \implies \nabla f(\vec{x}) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ (for any $\vec{x}^{!}$)
 $\Rightarrow \nabla f(\vec{x}^{k})^{T} \vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}^{T} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 20 > 0$
 $\Rightarrow Y_{40}, \vec{d}$ is improving at \vec{x}^{k}
 $= 4(4) + 2(2)$
 $= 20$

• For linear programs in general: if **d** is an improving direction at \mathbf{x}^k , then $f(\mathbf{x}^k + \lambda \mathbf{d})$ improves as $\lambda \to \infty$

7 Step size

- We have an improving direction **d** now how far do we go?
- One idea: find maximum value of λ so that $\mathbf{x}^k + \lambda \mathbf{d}$ is still feasible
- Graphically, we can eyeball this
- Algebraically, we can compute this in Example 1:

For what values of
$$\lambda$$
 is $\vec{x}^{\pm} + \lambda \vec{\lambda} = \begin{pmatrix} 4\lambda \\ 1+2\lambda \end{pmatrix}$ featible?

$$\frac{f(\vec{x})}{4x_1+2x_2}$$
subject to $x_1 + 3x_2 \leq 12^{-1} \cdot (.0)$

$$g(\vec{x}) = \frac{2x_1 + x_2}{2x_2 + x_2} \leq 8^{-1} \cdot (.2)$$

$$g(\vec{x}) = \frac{2x_1 + x_2}{2x_2 + x_2} \leq 8^{-1} \cdot (.2)$$

$$g(\vec{x}) = \frac{2x_1 + x_2}{2x_2 - 1} \leq (.2)$$

$$(1) \quad x_1 + 3x_2 \leq 12$$

$$(2) \quad 2x_1 + x_2 \leq 8$$

$$(3) \quad 4\lambda + 3(1+2\lambda) \leq 12$$

$$(2) \quad 2x_1 + x_2 \leq 8$$

$$(3) \quad 4\lambda + 3(1+2\lambda) \leq 12$$

$$(4) \quad x_1 \leq 3$$

$$(5) \quad x_1 \geq 0$$

$$(4) \quad x_1 \geq 0$$

$$(5) \quad x_1 \geq 12$$

$$(5) \quad x_$$

8 Feasible directions

- Some improving directions don't lead to any new feasible solutions
- **d** is a **feasible direction** at feasible solution \mathbf{x}^k if $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all positive λ "close" to 0
- Again, graphically, we can eyeball this
- A constraint is **active** at feasible solution **x** if it is satisfied with equality

• For linear programs:

• We have constraints of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$$
$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$$
$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

• We can rewrite these constraints using vector notation:

Let:
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ \Rightarrow $\vec{a}^T \vec{x} \ge b$
 $\vec{a}^T \vec{x} = b$

• **d** is a feasible direction at **x** if

 $\diamond \ \mathbf{a}^{\mathsf{T}}\mathbf{d} \leq 0 \text{ for each <u>active</u> constraint of the form } \mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$

 $\diamond \mathbf{a}^{\mathsf{T}}\mathbf{d} \ge 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \ge b$

 $\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} = b$

If there are no active constraints at a feasible solution x, then any direction is feasible.

• In Example 1:

Is $\vec{d} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ a feasible direction at $\vec{x}^{k} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$? f(x) maximize $4x_1 + 2x_2$ subject to $x_1 + 3x_2 \le 12$ **b** (1) $g_{1}(\vec{x}) = \frac{2x_{1} + x_{2}}{y_{1}(\vec{x})} \leq \frac{2x_{1} + x_{2}}{x_{1} > 0} \leq \frac{8}{x_{1}} = b_{2}(2)$ Active constraints? $\begin{array}{c}
 g_{1}(\vec{x}) & \underbrace{x_{1} \geq 0}_{g_{1}(\vec{x})} & \underbrace{x_{1} \geq 0}_{g_{1}(\vec{x})} & \underbrace{x_{1} \geq 0}_{g_{2}(\vec{x})} & \underbrace{x_{2} \geq 0}_{g_{4}(\vec{x})} & \underbrace{x_{2} \geq 0}_{g_{4}(\vec{$ (3) (1) $0 + 3(1) \le 12$ not active (4)not active $(2) 2(0) + (1) \leq 8$ active → (3) 0 2 0 not active 1 2 0 (4) (3) is of the form $\vec{a}^T \vec{x} \ge 0$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ \vec{a} is feasible at \vec{x}^k . => need to check if and = 0 => Yes! $\binom{1}{2}^{T}\binom{4}{2}$

9 Detecting unboundedness - improve obj. fr. value infinitely.

- Suppose **d** is an improving direction at feasible solution \mathbf{x}^k to a <u>linear</u> program
- Also, suppose $\mathbf{x}^k + \lambda \mathbf{d}$ is feasible for all $\lambda \ge 0$
- What can you conclude?

LP is unbounded :	$f(\vec{x}^{k}+\lambda \vec{d})$ improves and $\vec{x}^{k}+\lambda \vec{d}$
	remains feasible as $\lambda \rightarrow \infty$

10 Summary

- Line 4 boils down to finding an improving and feasible direction **d** and an accompanying step size λ
- We discussed conditions on whether a direction is improving and feasible
- We don't know how to systematically find such directions... yet